Continuity of Gaussian Processes

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

CLT for L moduli of continuity of Gaussian processes

Let G = {G(x), x ∈ R1} be a mean zero Gaussian processes with stationary increments and set σ2(|x − y|) = E(G(x) − G(y))2. Let f be a symmetric function with Ef(η) < ∞, where η = N(0, 1). When σ2(s) is concave or when σ2(s) = sr, 1 < r ≤ 3/2 lim h↓0 ∫ b a f ( G(x+h)−G(x) σ(h) ) dx− (b− a)Ef(η) √ Φ(h, σ(h), f, a, b) law = N(0, 1) where Φ(h, σ(h), f, a, b) is the variance of the numerator. This r...

متن کامل

On the Norm Continuity of ^'-valued Gaussian Processes

Let Sf be the Schwartz space of all rapidly decreasing functions on R, Sf be the topological dual space of Sf and for each positive integer p,Sfp be the space of all elements of £f' which are continuous in the p-th norm defining the nuclear Frechet topology of Sf. The main purpose of the present paper is to show that if {Xtί t e [0, + oo)} is an ^'-valued Gaussian process and for any fixed φβ^ ...

متن کامل

The Rate of Entropy for Gaussian Processes

In this paper, we show that in order to obtain the Tsallis entropy rate for stochastic processes, we can use the limit of conditional entropy, as it was done for the case of Shannon and Renyi entropy rates. Using that we can obtain Tsallis entropy rate for stationary Gaussian processes. Finally, we derive the relation between Renyi, Shannon and Tsallis entropy rates for stationary Gaussian proc...

متن کامل

Moduli of Continuity of Local Times of Strongly Symmetric Markov Processes via Gaussian Processes

1. Introduction. In this paper we show that the moduli of continuity of the local times

متن کامل

L moduli of continuity of Gaussian processes and local times of symmetric Lévy processes

Let X = {X(t), t ∈ R+} be a real valued symmetric Lévy process with continuous local times {Lt , (t, x) ∈ R+ × R} and characteristic function EeiλX(t) = e−tψ(λ). Let σ 0(x− y) = 4 π ∞ ∫ 0 sin λ(x−y) 2 ψ(λ) dλ. If σ2 0(h) is concave, and satisfies some addtional very weak regularity conditions, then for any p ≥ 1, and all t ∈ R+

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Transactions of the American Mathematical Society

سال: 1970

ISSN: 0002-9947

DOI: 10.2307/1995502